GOVT. GEN. DEGREE COLLEGE, CHAPRA

[Affiliated to University of Kalyani]

DEPARTMENT OF PHYSICS

UG 4 YEAR PHYSICS (HONOURS/ HONOURS WITH RESEARCH)

(Under NEP 2020)

W.E.F. the Academic Session 2023-24

Programme Outcome (PO)-Course Outcome (CO)

SEMESTER-I								
Course Code	Course Title	Nature of Course	Credit	Class	Eval			
	(credit)		of Course	hours/ week	Internal	Semester End	Total	
PHY-M-T-1	Mathematical	Major	6	6	15	60	75	
PHY-M-P-1	physics I (4+2)	iysics I (4+2)						
PHY-MI-T-1	Mathematical	Minor	4	4	10	40	50	
PHY-MI-P-1	physics I (3+1)							
PHY-MU-T-1	Physics in everyday life	Multidisciplinary Course	3	3	10	35	45	
PHY-SEC-T-1	Electrical circuit and network skills	Skill Enhancement Course	3	3	10	35	45	
		Value Added Course	4	4	10	40	50	
			20	20	55	210	265	

SEMESTER-III								
Course Code	Course Title	Nature of Course	Credit of	Class hours/	Evalu	ation	Total	
			Course	week	Internal	Semes ter End		
PHY-M-T-3	Electricity and magnetism (4+2)	Major	6	6	15	60	75	
PHY-MI-T-3	Electricity and magnetism (3+1)	Minor	4	4	10	40	50	
PHY-MU-T-3	Physics in everyday life	Multidisciplinary Course	3	3	10	35	45	
PHY-SEC-T-3	Renewable Energy and Energy Harvesting	Skill Enhancement Course	3	3	10	35	45	
		Value Added Course	4	4	10	40	50	
			20	20	55	210	265	

Value Added Course will be common to all majors

SEMESTER-II								
Course Code	Course Title	Nature of Course	Credit	Class	Eval	Total		
			of Course	hours/ week	Internal	Semester End		
PHY-M-T-2	PHY-M-T-2 Mechanics (4+2)		6	6	15	60	75	
PHY-MI-T-2	Mathematical physics I (3+1)	Minor	4	4	10	40	50	
PHY-MU-T-2 Physics in everyday life		Multidisciplinary Course	3	3	10	35	45	
PHY-AECC-T-1		Ability Enhancement Course	4	4	10	40	50	
PHY-SEC-T-2 Basic Instrumentati on Skills		Skill Enhancement Course	3	3	10	35	45	
For Cert	tificate	Summer Internship	4*	4				
			20	20	45	220	265	

🖶 Value Added Course will be common to all major

	SEMESTER-IV								
Course Code	Course Title	Nature of Course	Credit of	Class hours/	Eval	Evaluation			
			Course	week	Internal	Semester End			
PHY-M-T-4	Wave Optics and Electromagnetic Theory (4+2)	Major	6	6	15	60	75		
PHY-M-T-5	PHY-M-T-5 Thermal Physics (4+2)		6	6	15	60	75		
PHY-MI-T-4	PHY-MI-T-4 Electricity and magnetism (3+1)		4	4	10	40	50		
PHY-AECC-T-2		Ability Enhancemen t Course	4	4	10	40	50		
For D	iploma	Summer Internship	4**	4					
			20	20	50	200	250		

S	Course/	Course	Theory/	Course Outcome (CO)
m	Course Code	Credit	Practical	
1 s t	Major: PHY-M-T -1/ PHY-M-P-1 Mathematical physics-I Minor: PHY-MI-T -1/ PHY-MI-P-1 Mathematical Physics -I	4T+2P = 6 $3T+1P = 4$	Theory Practical	 After successful completion of this course students should be able to: Apply calculus techniques, including differential equations and multivariable functions, to model physical systems. Utilize vector calculus operations (gradient, divergence, curl) and integral theorems (Gauss, Stokes) in physical contexts. Analyze matrices, eigenvalues, and eigenvectors to solve coupled linear differential equations. Understand probability distributions (Binomial, Gaussian, Poisson) and their applications in physics. Employ computational methods to simulate and solve numerical problems in physics. Interpret and visualize mathematical concepts through graphing and coordinate transformations. After going through the practical course, the students should be able to develop proficiency in computer programming and numerical analysis, with a focus on applying these skills to solve physics problems. Students will gain hands-on experience in computational techniques using Sci-Lab/Python, a widely recognized open-source programming language, enabling them to simulate physical systems, analyze data, and implement numerical methods effectively. The course aims to bridge theoretical concepts with practical computational tools, preparing students for
	Multi - disciplinary Course: PHY-MU-T-1 Physics in everyday life	3	Theory	 After successful completion of this course students should be able to: Explain fundamental physics principles and their applications in everyday phenomena. Analyze real-world scenarios using concepts of mechanics, energy, waves, light, electricity, and magnetism. Demonstrate the role of physics in technology, transportation, sports, and music through practical examples. Apply critical thinking and the scientific method to solve problems related to natural and engineered systems. Appreciate the impact of modern physics, including quantum theory and nuclear physics, on contemporary technology.
	Skill Enhancement Courses: PHY-SEC-T-1 Electrical Circuits & Network Skills	3	Theory	 After successful completion of this course students should be able to: Apply fundamental electrical principles (Ohm's Law, AC/DC circuits) to analyze circuits using multimeters and other measuring instruments. Design, construct, and test basic electrical circuits, including series, parallel, and combination configurations. Explain the working principles of generators, transformers, and electric motors, and their applications in real-world systems. Operate and analyze solid-state devices (diodes, rectifiers) and understand their role in power regulation and conversion. Implement electrical safety measures using protective devices like fuses, relays, and circuit breakers in wiring systems. Demonstrate practical skills in household wiring, including conduit wiring, extension board preparation, and star/delta connections.

	Major: PHY-M-T-2/			After successful completion of this course students should be able to:
2 n d	PHY-M-P-1 Mechanics	4T+2P =6	Theory	• Analyze classical mechanics systems using Newtonian dynamics, conservation laws (momentum, energy, angular momentum), and rotational motion principles.
				• Solve problems in collisions, variable-mass systems (e.g., rockets), and central force motion, including applications of Kepler's laws and satellite dynamics.
				• Apply concepts of elasticity, fluid motion, and oscillations, such as Poiseuille's flow, damped/forced oscillations, and resonance.
				• Understand non-inertial frames and fictitious forces (centrifugal, Coriolis) in rotating systems, and derive kinematic quantities in curvilinear coordinates.
				• Explain the principles of Special Relativity, including Lorentz transformations, time dilation, mass-energy equivalence, and relativistic kinematics.
				• Integrate theoretical knowledge with problem-solving skills to address complex mechanical systems and relativistic phenomena.
			Practical	 After going through the practical course, the students should be able to Master measurement techniques using precision instruments like vernier calipers, screw gauges, and microscopes, while analyzing random errors in observations.
				• Determine fundamental constants (e.g., acceleration due to gravity <i>g</i> , spring constant) and material properties (Young's modulus, rigidity, viscosity) through hands-on experiments.
				• Analyze mechanical systems by calculating MI, studying spring motion, and applying Poiseuille's and Stoke's methods to fluid dynamics.
				• Investigate oscillatory and wave phenomena, including resonance in sonometer wires and pendulum dynamics, to evaluate frequencies and system behaviors.
				• Develop experimental and analytical skills by linking theoretical principles (e.g., elasticity, kinematics, fluid mechanics) to practical observations and data interpretation.
	Minor:			After successful completion of this course students should be able to:Apply calculus techniques, including differential equations and
	PHY-MI-T -1/ PHY-MI-P-1	3T+1P =4	Theory	multivariable functions, to model physical systems.Utilize vector calculus operations (gradient, divergence, curl) and

Mathematical Physics -I		Practical	 integral theorems (Gauss, Stokes) in physical contexts. Analyze matrices, eigenvalues, and eigenvectors to solve coupled linear differential equations. Understand probability distributions (Binomial, Gaussian, Poisson) and their applications in physics. Employ computational methods to simulate and solve numerical problems in physics. Interpret and visualize mathematical concepts through graphing and coordinate transformations. After going through the practical course, the students should be able to develop proficiency in computer programming and numerical analysis, with a focus on applying these skills to solve physics problems. Students
		Tacucal	will gain hands-on experience in computational techniques using Sci- Lab/Python, a widely recognized open-source programming language, enabling them to simulate physical systems, analyze data, and implement numerical methods effectively. The course aims to bridge theoretical concepts with practical computational tools, preparing students for advanced studies and research in physics.
Multi -			After successful completion of this course students should be able to:
disciplinary Course:			• Explain fundamental physics principles and their applications in everyday phenomena
Course.	3	Theory	 Analyze real-world scenarios using concepts of mechanics, energy.
PHY-MU-T-1			waves, light, electricity, and magnetism.
Dhysics in			• Demonstrate the role of physics in technology, transportation, sports,
Physics in everyday life			and music through practical examples.
			• Apply crucal uninking and the scientific method to solve problems related to natural and engineered systems
			• Appreciate the impact of modern physics, including quantum theory
			and nuclear physics, on contemporary technology.
Skill			After successful completion of this course students should be able to:
Enhancement			• Operate key electronic instruments (multimeters, CROs, signal generators LCR bridges) and evaluate their specifications limitations
Courses.	3	Theory +	and applications in measurements.
PHY-SEC-T-1		Lab	• Analyze measurement errors (loading effects, precision, accuracy) and
Pasia			apply corrective techniques while using analog and digital instruments.
Instrumentatio			• Demonstrate proficiency with oscilloscopes by measuring voltage, frequency time periods phase angles and troubleshooting circuits
n Skills			 Design and test circuits using impedance bridges. O-meters. and digital
			multimeters, including calibration and range conversion tasks.
			• Develop problem-solving skills in circuit tracing, coil/transformer
			winding, and troubleshooting electronic equipment through hands-on
			 Compare analog vs. digital instruments and explain the principles of
			digital meters, universal counters, and advanced tools like distortion analyzers
			The course bridges theoretical knowledge with practical
			instrumentation skills, preparing students for real-world challenges in electronics and measurement technologies.

	Major:			After successful completion of this course students should be able to:
				• Apply fundamental laws (Gauss' Law, Biot-Savart's Law, Ampere's
	PHY-M-T-3 /	4T+2P	Theory	Law, Faraday's Law) to analyze electric and magnetic fields in
2	PHY-M-P-3	=6		symmetric charge/current distributions.
3 r				• Solve electrostatic and magnetostatic problems using concepts of
d	Electricity and			potential, capacitance, polarization, magnetization, and vector calculus
	Magnetism			(divergence, curl).
				• Analyze dielectric and magnetic materials by relating macroscopic
				properties (susceptibility, permeability) to microscopic behavior
				(polarization, hysteresis).
				• Design and evaluate AC circuits with LCR components including
	Minor:			resonance power dissipation and quality factor calculations
				• Itilize network theorems (Thevenin Norton Supernosition) to simplify
	PHY-MI-T-3 /	3T+1P		and solve DC/AC circuits for practical applications
	PHY-MI-P-3	=4		• Explain electromagnetic phenomena such as induction transients in
				• Explain electromagnetic phenomena such as induction, transients in
	Electricity and			LCK circuits, and energy storage in electric/magnetic fields.
	Magnetism			After asing through the prostical course, the students should be able to
				After going inrough the practical course, the students should be able to
				• Operate measurement instruments (multimeters, potentiometers,
				bridges, ballistic galvanometers) to quantify electrical parameters
				(resistance, capacitance, voltage, current) and troubleshoot circuits.
				• Validate fundamental theorems (Thevenin, Norton, Superposition,
				Maximum Power Transfer) through hands-on experiments in DC/AC
				circuits.
			Practical	• Analyze LCR circuits by determining resonant/anti-resonant
				frequencies, quality factor (Q), bandwidth, and impedance
				characteristics.
				• Measure electromagnetic properties (self/mutual inductance, magnetic
				field strength, charge sensitivity) using bridge methods and
				galvanometers.
				• Develop experimental rigor by documenting procedures, analyzing
				errors, and interpreting data to correlate theoretical principles with
				practical observations.
	Multi -			After successful completion of this course students should be able to:
	disciplinary			• Explain fundamental physics principles and their applications in
	Course:			everyday phenomena.
		3	Theory	• Analyze real-world scenarios using concepts of mechanics, energy,
	PHY-MU-T-1			waves, light, electricity, and magnetism.
				• Demonstrate the role of physics in technology, transportation, sports,
	Physics in			and music through practical examples.
	everyday life			• Apply critical thinking and the scientific method to solve problems
				related to natural and engineered systems.
				• Appreciate the impact of modern physics, including quantum theory
				and nuclear physics, on contemporary technology.
	Skill			After successful completion of this course students should be able to:
	Enhancement			• Evaluate energy sources by comparing fossil fuels, nuclear energy and
	Courses:			renewable alternatives, highlighting their limitations and environmental
		3	Theory	impacts.
	PHY-SEC-T-3	5		 Explain solar energy technologies including thermal/electrical storage
	~~ 1 0			nhotovoltaic systems and applications like solar cookers and
	Renewable			photovoltate systems, and applications like solar cookers and
			•	

	Energy &			greenhouses.
	Energy			• Analyze wind and ocean energy systems, covering principles of wind
	Harvesting			turbines, OTEC cycles, and tidal power estimation.
				• Describe geothermal and hydro energy, including resource types, power
				plant designs, and their socio-environmental advantages/disadvantages.
				• Explore emerging technologies like piezoelectric energy harvesting,
				including material properties and modern applications.
	Major:			After successful completion of this course students should be able to:
	-	4T+2P	Theory	• Analyze wave phenomena including superposition, standing waves, and
	PHY-M-T-4 /	=6		energy transfer in vibrating systems, and relate them to real-world
4 t	PHY-M-P-4			applications like musical instruments.
۰ h				• Explain interference and diffraction principles, applying them to
	Wave Optics			experiments (Young's double slit, Newton's rings) and interferometers
	and			(Michelson, Fabry-Perot).
	Electromagneti			• Solve problems in wave optics using Fresnel and Fraunhofer diffraction
	c Theory			theories, and evaluate resolving power of optical instruments
				(telescopes, gratings).
				• Derive and apply Maxwell's equations to describe electromagnetic
				wave propagation in unbounded/bounded media, including boundary
				conditions and Poynting theorem.
				• Investigate polarization mechanisms (linear, circular, elliptical) and
				their applications in crystals, retarders, and optical devices (Nicol
				prism, polarimeters).
				After going through the practical course, the students should be able to
				• Apply wave optics principles through experiments like Melde's setup
				(frequency determination) and interference techniques (Newton's rings,
				biprism).
				• Measure optical properties (wavelength, refractive index, dispersive
				power) using diffraction gratings, prisms, and wedge films.
				• Verify fundamental laws (Malus' law for polarization, X ² -T law in
			Practical	vibrations) and analyze spectral lines with precision instruments.
				• Investigate polarization phenomena by determining specific rotation of
				solutions and refractive indices via total internal reflection.
				• Develop experimental skills in aligning optical setups, recording data,
				and interpreting results to bridge theoretical concepts with practical
	Maiam			Observations.
	iviajor:	4 Τ ⊧ 2 ₽	Theory	After successful completion of this course students should be able to:
	DUV M T 5 /	41+2P	Theory	• Apply thermodynamic laws (Zeroth, First, Second, and Ihird) to
	$\mathbf{PHI} \cdot \mathbf{M} \cdot \mathbf{I} \cdot \mathbf{J} / \mathbf{D} \cdot \mathbf{V} \cdot \mathbf{M} \cdot \mathbf{D} \cdot \mathbf{S}$	-0		analyze energy transfer, work, neat engines, and refrigerators, including
	гп I -Ivi-г-J			efficiency calculations (Carnot cycle).
	Thermal			• Analyze entropy changes in reversible/irreversible processes and
	Physics			anargy) for phase transitions and material properties
	1 119 5105			• Utilize Maxwell's relations to derive equations for real gas behavior
				• Other Waxwell's relations to derive equations for real gas behavior (ven der Weels, Joula Thomson effect) and predict thermodynamic
				(van uer waars, sourcernonison enect) and predict mennodylianing properties (e.g. Cn-Cy)
				• Explain kinetic theory concepts including Maxwell Deltamon
				velocity distribution equipartition of energy and transport phonomene
				(viscosity diffusion thermal conductivity)
				• Evaluate real gas behavior through critical constants virial equations
				- Evaluate real gas behavior unough entited constants, virial equations,

			and experiments (Andrews, Joule-Thomson), distinguishing between
			ideal and non-ideal systems.
			After going through the practical course, the students should be able to
			• Measure fundamental thermal properties, including mechanical
			equivalent of heat (J), thermal conductivity (good and bad conductors),
			and temperature coefficients (resistance, expansion).
			• Calibrate and use temperature sensors (thermocouples, platinum
			resistance thermometers) to determine phase transition points (boiling.
			melting) and thermo-emf variations.
		Practical	• Apply experimental techniques (Searle's Angstrom's Lee and
			Charlton's methods) to analyze heat conduction and validate theoretical
			models
			• Develop hands-on skills in data collection error analysis and
			interpretation of thermal phenomena bridging theoretical concepts with
			laboratory observations
Minor			After successful completion of this course students should be able to:
			• Apply fundamental laws (Gauss' Law Biot Savart's Law Ampere's
PHY_MLT_4 /	3T⊥1P	Theory	• Apply fundamental laws (Gauss Law, Diot-Savart's Law, Ampere's Law, Faraday's Law) to analyze electric and magnetic fields in
PHY-MI-P-4	$-\Delta$	Theory	symmetric charge/current distributions
	-+		• Solve electrostatic and magnetostatic problems using concents of
Electricity and			• Solve electrostatic and magnetostatic problems using concepts of
Magnetism			(divergence, curl)
Widghetishi			(uivergence, cui).
			• Analyze delectric and magnetic materials by relating macroscopic
			(nolorization hystoresis)
			(polarization, hysteresis).
			• Design and evaluate AC circuits with LCR components, including
			resonance, power dissipation, and quality factor calculations.
			• Utilize network theorems (Thevenin, Norton, Superposition) to simplify
			and solve DC/AC circuits for practical applications.
			• Explain electromagnetic phenomena such as induction, transients in
			LCR circuits, and energy storage in electric/magnetic fields.
			After going through the practical course, the students should be able to
			• Operate measurement instruments (multimeters, potentiometers,
			bridges, ballistic galvanometers) to quantify electrical parameters
			(resistance, capacitance, voltage, current) and troubleshoot circuits.
			• Validate fundamental theorems (Thevenin, Norton, Superposition,
			Maximum Power Transfer) through hands-on experiments in DC/AC
			circuits.
		Practical	• Analyze LCR circuits by determining resonant/anti-resonant
			frequencies, quality factor (Q), bandwidth, and impedance
			characteristics.
			• Measure electromagnetic properties (self/mutual inductance, magnetic
			field strength, charge sensitivity) using bridge methods and
			galvanometers.
			• Develop experimental rigor by documenting procedures, analyzing
			errors, and interpreting data to correlate theoretical principles with
			practical observations.